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Figure 1: Measured 6DOF ground-motion data
for 22 September 1993 NPE event (Nigbor R.L.
(1994) Six-degree-of-freedom ground-motion
measurement, Bull. Seis. Soc. Am, 84(5),
1665-1669)

HOW CAN BE INTRODUCED THE ROTATION VECTOR?

Restricted rotations: θ = 1/2 rotu Independent rotations: θ and u are independent

Equation of motion Stress tensor Couple-stress tensor Geometrical equations

Classical elasticity theory (2µ + λ)grad divu− µ rot rotu +X = ρü σ̃ = 2µε̃ + λI1(ε̃)ẽ ε̃ = (∇u +∇uT )/2

Cosserat pseudo-continuum µ∇2u + (µ + λ)grad divu + 1
4(γ + ε)rot rot∇2u +X = ρü σ̃ = 2µγ̃(A) + λI1(γ̃)ẽ− 1

2∇ · µ̃ · Ẽ µ̃ = 2γχ̃(S) + 2εχ̃(A) γ̃ = ∇u− Ẽ · θ
χ̃ = ∇θ

Reduced Cosserat continuum
(λ + 2µ)grad divu− (µ + α)rot rotu + 2α rotθ +X = ρü,

2α rotu− 4αθ + Y = jθ̈
σ̃ = 2µγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ γ̃ = ∇u− Ẽ · θ

Cosserat continuum
(λ + 2µ)grad divu− (µ + α)rot rotu + 2α rotθ +X = ρü,

(β + 2γ)grad divθ − (γ + ε)rot rotθ + 2α rotu− 4αθ + Y = jθ̈
σ̃ = 2µγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ µ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ

γ̃ = ∇u− Ẽ · θ
χ̃ = ∇θ
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p = n · σ̃ and m = n · µ̃ are force and moment of force

u = {ux, uy, uz} is displacement vector and θ = {θx, θy, θz} is rotation vector

µ, λ are the Lame constants,

α, β, γ, ε are the physical constants of a material in the framework of the Cosserat medium,

ρ is the density, j is the moment of inertia density,

(.)(S) and (.)(A) denote the symmetric and antisymmetric parts of tensor, Ẽ is the Levi-Civita
tensor of the third rank and ẽ is the identity tensor

1 MOTIVATION

“The model of the classical theory of elasticity agrees well with experiments con-
ducted on construction materials at stresses within the limit of elasticity. Appre-
ciable differences between the theory and experiment occur in the cases where
stress gradients are essential ..., in vibration problems of wave propagation and
forced high-frequency vibrations ... and in granular materials”

Witold Nowacki

2 ROCKS AND COMPRESSED SOILS AS RE-

DUCED COSSERAT CONTINUUM

We consider a heterogeneous elastic medium with inclusions as a homogeneous
reduced Cosserat continuum, whose point-bodies may rotate and move.
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Rotations and translations are independent. The medium reacts on the rotation
of a point-body relatively to the background continuum, but there is no “rota-
tional spring” trying to reduce the relative turn of point-bodies
=⇒ stress tensor is asymmetric, but couple-stress tensor is zero.

In the case X = 0 and Y = 0 (no external loads) we have the equations of
motion as follows:

(λ + 2µ)∇∇ · u− (µ + α)∇× (∇× u) + 2α∇× θ = ρü,

2α∇× u− 4α θ = jθ̈.

3 DYNAMIC PROBLEM OF PLANE WAVE PROP-

AGATION

Representation of the solution for displacement and rotation vectors compo-
nents

un(x, z, t) =
∞∫
−∞

Un(z)ei(kx+ωt)û0(ω) dω

θn(x, z, t) =
∞∫
−∞

θn(z)ei(kx+ωt)û0(ω) dω

where k is the wavenumber, ω is the circular frequency, t is the time, Un(z) and
θn(z) are amplitude functions depending on depth and frequency. û0(ω) is the
complex spectral function corresponding to the Fourier spectrum of a source
signal and determines the wavepacket form.

Plane P-wave: Ux(z) = Ux =⇒
Dispersion relation is k(ω) = ω/Cp, whereCp =

√
λ+2µ
ρ .

They are not any differencies between classical end reduced Cosserat theories.

Plane S-wave: Uy(z) = Uy, Uz(z) = Uz, θy(z) = θy, θz(z) = θz =⇒
Dispersion relation is

ω4 − ω2(ω2
0 + C2

sαk
2) + ω2

0C
2
sk

2 = 0,

k(ω) = ω
Cs

√
1−ω2/ω2

0

1−ω2/ω2
1
,

θy = ikω2
0

2(ω2−ω2
0)
Uz, θz = ikω2

0

2(ω2−ω2
0)
Uy, θ 6= 1/2 rotu

Figure 2: Example of dispersion curves of S-wave. Cs = 200, Csα =
244.9, Cp = 600, ω0 = 894.4, ω1 = 730.2. Red bold lines describe the solu-
tion for reduced Cosserat medium, red vertical lines correspond to frequencies
ω0 and ω1, grey horizontal lines correspond to velocities Cs and Cp and blue
horizontal line shows the Csα velocity.
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Here Cs =

√
µ

ρ
, Csα =

√
α + µ

ρ
, ω0 = 2

√
α

j
, ω1 =

Cs
Csα

ω0 =

√
αµ

j(α + µ)
.

4 SURFACE RAYLEIGH WAVE

Plane surface wave in the free elastic half-space is considered.
z (axis i3) — depth, x, y (axes i1, i2) — plane co-ordinates.
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Rayleigh-type solution decreases with depth z:

Ux(z) = D1ike
−ν1z + D2ν2e

−ν2z, Uz(z) = −D1ν1e
−ν1z + D2ike

−ν2z,

θy(z) = D2
ω2

2C2
s(1− ω2/ω2

1)
e−ν2z, θ 6= 1/2 rotu

where

ν1 =

√√√√k2 − ω2

C2
p

and ν2 =

√√√√k2 − ω2

C2
s

(
1− ω2/ω2

0

1− ω2/ω2
1

)
.

Boundary conditions on the free surface is i3 · σ̃ = 0 =⇒
we obtain the dispersion relation for the Rayleigh wave:

4k2ν1ν2 = (2k2 − ω2/C2
s)

2.

Zones of existence for Rayleigh waves: ν1, ν2 ∈ <. In the classical case the
Rayleigh wave exists for all ω.
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ν > 02

1ν > 0,

Sc k

Pc k
Sαc   k

k

0

ω

ω
ω

1

case
λ+µ<α

Solution of the Rayleigh equation:

k(ω) =
ω

Cs

√√√√
3
√

4c(ω)

12a(ω)
− b(ω)

6a(ω)
+

3
√

2(b(ω)2 − 12a(ω))

6a(ω)c(ω)
.

where

a(ω) = 2
(

1− C2
s

C2
p

+ ω2

(1+µ/α)(ω2−ω2
1)

)
, b(ω) = 2

(
2C

2
s

C2
p
− 3− 2C2

sω
2

C2
p(1+µ/α)(ω2−ω2

1)

)
,

c(ω) = 3

√
27a(ω)2 − 2b(ω)3 + 36a(ω)b(ω) + d(ω),

d(ω) = 3
√

3a(ω)
√

27a(ω)2 − 4b(ω)3 − 16b(ω)2 + 72a(ω)b(ω)+256a(ω).

Figure 3: Example of dispersion curves of Rayleigh waves. Cs = 200, Csα =
244.9, Cp = 600, ω1 = 730.2, ω2 = 622.7. Red bold lines describe the solution
for reduced Cosserat medium, red vertical lines correspond to frequencies ω1 and
ω2, grey horizontal lines correspond to velocities Cs and Cp, hatch black lines
depict the solution for Rayleigh wave in the classical case, dotted blue lines show
the solution within the wramework of Cosserat continumm (M. Kulesh et al.
Acoustical Physics, 2006, Vol. 52, No. 2, pp. 186-193.)
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5 PLANE WAVES FROM DYNAMIC POINT

SOURCE

External loads at r = 0: force X(r, t) = X0δ(r)eiωt, torque Y (r, t) =
Y0δ(r)eiωt.

General solution:

u = Y0e
iωtẽ×r̂

8παµr2

(
1− ω2

ω2
1

)−1 (
1 + i

ωf(ω)
Cs

r
)
e−i

ωf(ω)
Cs

r − X0e
iωt

4πµ(λ+2µ)

(
ω2

C2
p
− ω2f 2(ω)

C2
s

)−1 (
1− ω2

ω2
1

)−1
·

{
− e−i

ω
Cp
r
(

(λ + µ− α)
(

1− ω2

ω2
0

)
+ α
)(

1
r
ω2

C2
p
r̂r̂ +

(
1 + i ωCp

r
)
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where r̂=r/r, r= |r|, f(ω)=
√

(1− ω2/ω2
0)/(1− ω2/ω2

1), if ω > ω0 or ω < ω1

and f(ω)=−i
√

(1− ω2/ω2
0)/|1− ω2/ω2

1|, if ω1 < ω < ω0.

Zone ω1 < ω < ω0: a part of the wave does not propagate (exponential decaying
in space), its energy is stored near the source. This indicates the possibility of
localisation phenomena.

First critical frequency ω = ω0: Resonant solution for θ if Y0 6= 0, part of the
translation wave does not propagate:

u = −Y0e
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ẽ− 3r̂r̂

r3
− e−i

ω0
Cp
r

(
1

r

ω2
0

C2
p
r̂r̂ +

(
1 + i

ω0

Cp
r

)
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Second critical frequency ω = ω1:
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In case if Y0 = 0, we have θ = 0, and in the translational displacement waves
we see the only non-zero part propagating with the phase velocity Cp.

Third critical frequency ω2f 2(ω) = C2
s/C

2
p: intersection of S- and P- dispersion

graphs for 3D plane waves, resonant solution for u.

Particular case Y0 = 0. At this limit the medium behaves as a classical elastic
medium with corresponding constants: for ω << ω1 with phase velocities Cp
and Cs and for ω >> ω0 with phase velocities Cp and Csα.

6 CONCLUSIONS

We have considered the reduced Cosserat medium where the couple stress is
zero, while the rotation vector is independent of the translational displacement:
θ 6= 1/2 rotu.

In this model, the stress depends on the rotation of a particle relatively to the
background continuum of mass centers, but it does not depend on the relative
rotation of two neighboring particles.

We have obtained and analyzed theoretical solutions for this model which de-
scribe the propagation of plane P-waves, S-waves, surface Rayleigh waves and
reaction of the medium to the dynamic point source.

We have shown both the dispersive character of these waves in elastic space and
half space, and the existence of forbidden frequency zones.

There is a zone (ω1;ω0) where the S-wave does not propagate (similar to the
3D case; unlike the classical and full Cosserat medium cases).

Waves produced by a dynamic point source with the frequency in the zone
(ω1;ω0) partially do not propagate (indicates possibility of localisation).

There is a forbidden zone (ω2;ω1) where the Rayleigh wave does not propagate
(similar to the 3D case; unlike the classical and full Cosserat medium cases).

The energy of wave in forbidden frequency zone is caught by rotation and
localised.

There is not surface transversal wave decreasing with depth (similar to the
classical case, unlike the full Cosserat case).

These results can be used for the preparation, execution, and interpretation of
seismic experiments, which would allow one to determine whether (and in which
situations) polar theories are important in rock mechanics, and to help with the
identification of material parameters of the reduced Cosserat continuum.
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