

Torsional Motion Due to Small-scale Geological Irregularities

M. Reza Ghayamghamian, IIEES G. Reza Nouri, Mohaghegh Ardabili Univesity

International Institute of Earthquake Engineering and Seismology

2nd IWGoRS, Czech Republic, Prague

Outlines

- > Torsional motion from array measurements.
- ➢Translation and torsion motion couplings.
- Observed torsion in Sendai.
- ➢Sendai Seismic array.
- Estimation of Torsional motion using Sendai array data.
- ➢ Torsional motion variations around Sendai Basin.
- ➢Numerical model for small-scale basin.
- ➢Centrifuge testing for modeling small-scale basin.
- Conclusions

International Institute of Earthquake Engineering and Seismology

Torsional motion from array measurements

Ghayamghamian M.R. and Motosaka M., 2003, **The effects of torsion and motion coupling in site response estimation**, *Journal of Earthquake Engineering and Structural Dynamics*, Vol. 32, No. 5, pp. 691-709.

Translation and torsion motion couplings

Ghayamghamian and Motosaka (2003) Ghayamghamian and Nouri (2007)

$$\begin{bmatrix} G_{xx} & G_{xy} & G_{x\theta} \\ G_{yx} & G_{yy} & G_{y\theta} \\ G_{\theta x} & G_{\theta y} & G_{\theta \theta} \end{bmatrix} \frac{\partial^2}{\partial z^2} \begin{pmatrix} u_x \\ u_y \\ u_\theta \end{pmatrix} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \rho & 0 \\ 0 & 0 & \rho \end{bmatrix} \frac{\partial^2}{\partial t^2} \begin{pmatrix} u_x \\ u_y \\ u_\theta \end{pmatrix}$$
$$pv_x^2 \begin{bmatrix} 1 & -\alpha & e_y \\ -\alpha & \gamma^2 & e_x \\ e_y & e_x & \beta^2 \end{bmatrix} \frac{\partial^2}{\partial z^2} \begin{pmatrix} u_x \\ u_y \\ u_\theta \end{pmatrix} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \rho & 0 \\ 0 & 0 & \rho \end{bmatrix} \frac{\partial^2}{\partial t^2} \begin{pmatrix} u_x \\ u_y \\ u_\theta \end{pmatrix}$$

International Institute of Earthquake Engineering and Seismology

Sendai City and Seismic Network

International Institute of Earthquake Engineering and Seismology

NS Comp. of Acc. Ground Motion Recorded at Different Locations Around Sendai Basin

Winnerwar

List of Events with Parameters Determined by the Japan Meteorological Agency

Soil Profile Based on Density and S-Wave Loggings at the Downhole Array Sites in Sendai

Number	Location of Accelerograms	Depth (m)	Soil Type	V_s (m/sec)	Density (kg/m ³
		MIY	A Site		
1	▼ (−1)	1.0 - 1.5	Clay with rubble	210	1.60
2		1.5 - 3.0	Gravel with clay	350	1.90
3		3.0-11.0	Gravel with clay	430	1.90
4		11.0-22.0	Gravel with clay	480	2.00
5	▼ (-22)	22.0-25.5	Gravel with clay	540	2.00
6		25.5-34.0	Tuff, mudstone	540	1.80
7		34.0-39.9	Mudstone	570	1.80
8		39.9-46.0	Sandstone	570	1.90
9		46.0-52.7	Sandstone	480	1.90
10		52.7-54.0	Mudstone	480	1.80
11	▼ (-54)	54.0-	Shale	680	1.80
		NAG	A Site		
1	▼ (-1)	1.0 - 4.9	Sand	105	1.65
2		4.9-9.3	Gravel	290	1.95
3		9.3-20.3	Sandy clay	170	1.70
4		20.3-28.5	Gravel with clay	290	1.75
5	▼ (-29)	28.5-56.5	Gravel with clay	600	2.10
6		81.0-56.5	Sandstone	530	1.95
7	▼ (-81)	81.0-	Sandstone	700	1.95
		OKI	N Site		
1	▼ (−1)	1.0-6.0	Gravel ,Silt	130	1.60
2		6.0-8.0	Gravel	250	1.95
3		8.0 - 11.8	Gravel	470	2.00
4		11.8-13.9	Clay	220	1.65
5		13.9-16.7	Fine sand	220	1.80
6	▼ (-17)	16.7-22.0	Gravel	420	2.00
7		22.0-41.8	Gravel with clay	530	2.10
8		41.8-49.6	Gravel with clay	660	2.10
9		49.6-62.0	Sandstone	560	2.00
10	▼ (-62)	62.0-	Sandstone	820	2.00

International Institute of Earthquake Engineering and Seismology

MIYA Site, NS Comp

Amplification Function Calculated by Uphole to Downhole Spectral Ratio, which reveal Coupling of shear wave around Basin Edge

Amplification Factor

12

6

Frequency (Hz)

Main Event

Ave. of the Small Events Theoretical 1D Model

Ghayamghamian M.R., 2008, Evidence for shear wave coupling due to small-scale lateral irregularities and its influence on site response estimation, Bulletin Seismological Society of America (BSSA), Vol. 98, No.3, pp. 1429-1446.

Estimating of Torsional motion using Sendai array data

Torsional motion variations around Sendai Basin

Numerical model for small-scale basin

Calculated Acc. motion at surface for the points using FLIP program

Torsional motion inferred from surface motions numerically calculated along the smallscale basin model.

Some future works on the effect of Torsional motion using centrifuge test of the smallscale basin

پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله International Institute of Earthquake Engineering and Seismology الملكي الملكي الزليه شناسی و مهندسی زلزله

Conclusions

The torsional motion affected by material and geometrical heterogeneity

The small-scale basin (geometrical heterogeneity) caused large torsional motion around basin edge.

➤This was verified through the anlysis of actual data from Sendai seismic array, and by numerical modeling.

multiplythad Alimmetrowner International Institute of Earthquake Engineering and Seismology

Thank You For Your **Attention**

