Ind Woakchop-of IWGoRS

Research on Rotational Ground motions

 in Wenchuan EarthquakeQ. Luo ${ }^{1}$, F. Yang ${ }^{2}$, Z. Hong ${ }^{2}$ and C. He^{2}

${ }^{1}$ Shanghai Institute of Disaster Prevetion and Pelief, Tongji University
${ }^{2}$ Reach Institute of Strctural Engineering and Disaster Prevetion and Relief, Tongji University

I About Wenchuan Earthquake
II Rotational Phenomena
III Rotational ground motions
IV Equivalent torsional acceleration
V Characteristic of rotational motions
VI Conclusion

2008/5/12,A shocking earthquake(M8.0) happened in Sichuan Province, China, which killed 69197 persons and 18222 persons were disappearance. 374176 persons were injured.

Rupture process of Wenchuan Earthquake

Rupture velocity: $\square \mathrm{km} / \mathrm{s}$

Duration: 120second
(Y.Chen et.al)

Panorama of one zigzag bridge in one park in Jiangyou city

The Plan of the zigzag bridge

No. 1 stone statue

No.1' stone statue

No. 2

No. ${ }^{\prime}$

No. 3

No.3'

No. 4

No.4'

No. 5

No.5'

No. 6

No. 7

No. 9
No. 8

No. ${ }^{\prime}$

No.9'

$\mathbf{N}_{\mathbf{O}}$
1
2
3
4
5
6
7
8
9

Torsion $\mathbf{z} /{ }^{\circ}$	0	0	-10	-5	+5	+20	+15	-5	0

$\mathbf{N}_{\mathbf{O}}$
1 '
2'
4'
5
6^{\prime}
7
8’\#
9\#
Torsion
$z /{ }^{\circ}$
-5
0
-60
-30
-15
$+20$
0
$+5$

Caused by torsional ground motion?

Caused by eccentricity of statues ?

Caused by no consistent input motion?

Acceleration recorded at Jiangyou station

Simulation method of rotational motions

$$
\omega_{g y}(\omega)=-\mathrm{i} \omega \frac{\omega)}{c(f)}
$$

Simulated rotational motion from translation components

Synthesized torsional acceleration at Jiangyou station(max.0.03rad/s2)

Plan of the model

Side face of the model

Calculation model of stone statue

Suppose the input acceleration along width direction is a, the inertia torque which results from eccentricity is:

$$
\begin{aligned}
L & =\left[\int_{l / 6}^{l / 2} \rho b \tau \cdot d \tau+\int_{-l / 2}^{l / 6} k \rho b \tau \cdot d \tau+k \rho \pi r^{2}(l / 6)\right] \cdot a \\
& =\left(\frac{1-k}{9} b l^{2}+\frac{k}{6} \pi r^{2} l\right) \rho a
\end{aligned}
$$

where τ is an integration variable and the moment of inertia I of the statue is

$$
\begin{aligned}
I & =\int_{l / 6}^{l / 2} \rho b r^{2} \cdot d r+\int_{-l / 2}^{l / 6} k \rho b r^{2} \cdot d r-\left[k \rho \pi r^{4} / 2+k \rho \pi r^{2}(l / 6)^{2}\right] \\
& =\left[\left(\frac{13}{324}+\frac{7 k}{162}\right) b l^{3}-\frac{k \pi r^{4}}{2}-\frac{k \pi r^{2} l^{2}}{36}\right] \rho
\end{aligned}
$$

According to inertia torque equivalence principle, equivalent torsional acceleration is as follows:

$$
\begin{aligned}
x=\frac{L}{I} & =\frac{\left(\frac{1-k}{9} b l^{2}+\frac{k}{6} \pi r^{2} l\right) \rho a}{\left[\left(\frac{13}{324}+\frac{7 k}{162}\right) b l^{3}-\frac{k \pi r^{4}}{2}-\frac{k \pi r^{2} l^{2}}{36}\right] \rho} \\
& =\frac{\left(\frac{1-k}{9} b l^{2}+\frac{k}{6} \pi r^{2} l\right)}{\left(\frac{13}{324}+\frac{7 k}{162}\right) b l^{3}-\frac{k \pi r^{4}}{2}-\frac{k \pi r^{2} l^{2}}{36}}(u \cdot \sin \theta+v \cos \theta)
\end{aligned}
$$

where, u is the input acceleration in east-west direction, v the input acceleration in north-south direction and θ an included angle between width direction of the statue and the north-south direction. By the equation, the equivalent torsional acceleration in case 1 (there is a stone lantern on the top of the statue head) and case 2 (there is not stone lantern) can be calculated.

Equivalent torsional acceleration of nine stone lions in case 1(Max.10rad/s2)

Equivalent torsional acceleration of nine stone lions in case 2(max.6rad/s2)

Experiment: Shaking Table Testing

\square Shaking Table (MTS
Size: $4 m \times 4 m$
Max specimen weight:
25 tons
Degree of Freedom: 6
\square Performance Horizontal X:
$1.2 \mathrm{~g} \mathrm{100cm/s} \mathrm{100cm}$ Horizontal Y:
$0.8 \mathrm{~g} \mathrm{60} \mathrm{cm} / \mathrm{s} 50 \mathrm{~cm}$ Vertical (Z):
$0.7 \mathrm{~g} 60 \mathrm{~cm} / \mathrm{s} 50 \mathrm{~cm}$

For calculating the rotational motions from the translations, we should consider two problems:

One is the dispersive curve of wave group velocities, another is the influence of the input angle of wave.

How do calculate the wave group velocity ? (Liao et.al)

$\overline{v_{T}}(f)=r / t_{f} \longrightarrow \mathrm{t}_{\mathrm{f}}$
How do get t_{f} ?

$$
t_{f}=t_{n f}-t_{c f}+r / c_{m}
$$

$t_{n f}$ is arrive time of the nth narrow wave group, which dominant frequency is f. $t_{c f}$ is arrive time of the fastest wave group, which velocity is. In one special area, c_{m} can be chosen as one value. In Sichuan, c_{m} is chosen as $6.5 \mathrm{~km} / \mathrm{s}$. We could use band filter method get t_{nf} and t_{cf}.

Example of band filter method

velocities in China and US

Frequency influence on input angles

Attenuation of translation and rotation motions

$\ln \alpha=a+\mathrm{b} \ln \left(R+R_{0}\right)$

平动分量 1 的衰减曲线

平动分量 3 的衰减曲线

	参数 a	参数 b
平动分量 1	11.0077	-1.3247
平动分量 2	11.0339	-1.3385
平动分量 3	11.3775	-1.5046

The fast attenuation is rocking component, then the translation, the slowest is torsion component.

At Jiangyou station

1 the peak equivalent torsional acceleration is about $10 \mathrm{rad} / \mathrm{s}^{2}$ in case 1 and is about $6 \mathrm{rad} / \mathrm{s}^{2}$ in case 2,but the peak torsional acceleration is about $0.03 \mathrm{rad} / \mathrm{s}^{2}$.
2 There are different dispersive curve of group velocities in different area.
3 The rocking component attenuates fast then the translation and torsion component.
4 The long period components of rock motions are richer than that of rotation motions.
5 The torsional phenomena of the statues on the zigzag bridge is mainly affected by its eccentricity, the anti-torque caused by structural eccentricity should be considered in seismic design.

Great earthquake could stop the clock $\square \square$

But it couldn't stop us marching $\square \square \square$

