

10 components of waveform at Pinon Flat Observatory (PFO), California

LMU (Ludwig-Maximilians-University Munich, Germany) <u>Chin-Jen Lin</u>, Joachim Wassermann, André Gebauer, Stefanie Donner, Celine Hadziioannou, Heiner Igel

TUM (Technical University Munich, Germany) Ulrich Schreiber

SCRIPPS (Institution of Oceanography, La Jolla, CA) Frank Vernon, Duncan Carr Agnew

Instruments at PFO

Thirteen broadband seismic stations (c) + Vertical ring-laser rotation sensor (d) + Three surface laser strainmeters (e)

- Array-derivation vs. direct observation
- (Teleseismic) <u>Joint analysis of translation and</u> rotation/strain
- (Microseismic) <u>Joint analysis</u> vs. <u>F-K methods</u> Back-azimuth

Array spatial calculation

courtesy of Heiner Igel

Suffer to the condition of zero traction at the free-surface ...

$$u_{z,t} = -u_{t,z} \qquad u_{z,r} = -u_{r,z}$$

Rotation vector (3 components)

Strain Tensor (4 components)

All observable components on the ground are **10**

[Spudich et al., 1995]

Array-derived rotation/strain

h/2

4 co-located STS-2 seismometers

Small array aperture h = 90me=0.01 c=3000 m/s

 $\frac{2\pi}{\lambda}h > e$

$$f_{min}=0.05\,Hz$$

	Rotation	Strain	
Love wave	(1) $\mathbf{c}_{\mathbf{L}} = \frac{-\dot{\mathbf{u}}_{\mathbf{t}}}{2\theta_{\mathbf{z}}}$ (Igel et al., 2005)	(2) $\mathbf{c_L} = \frac{-\dot{\mathbf{u}_t}}{2\mathbf{e_{rt}}}$ (Gomberg & Agnew, 1996)	
Rayleigh wave	(3) $\mathbf{c}_{\mathbf{R}} = \frac{\dot{\mathbf{u}}_{\mathbf{z}}}{\mathbf{\theta}_{\mathbf{t}}}$ (Lin et al., 2011)	(4) $c_{R} = -\frac{\dot{u}_{r}}{e_{rr}}$ (Gomberg & Agnew, 1996)	(5) $\mathbf{c}_{\mathbf{R}} = \frac{-\upsilon}{1-\upsilon} \frac{\dot{u}_{\mathbf{r}}}{\mathbf{e}_{\mathbf{zz}}}$ (Blum et al., 2010)

Background noise

rotation

strain

Array-derived rotation vs. point measurement

The result is slightly different due to effect of measurement scale

Assuming plane wave propagation

- ✓ Translations can be scaled to the rotation/strain
- ✓ Derived <u>apparent velocities</u>, from <u>rotation</u> and <u>strain</u>, are consistent.

Microseismic signal

 \checkmark

 \checkmark <u>Back-azimuth</u> of the source determined by three methods are consistent.

Acknowledgements

Ulrich Schreiber André Gebauer Joachim Wassermann