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Bi-Directional Ring Lasers

Sensitivity to (for example) Earth
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Six orders of magnitude increase in sensitivity in 25 years



Different Concept: All Solid State Sensors

Replace the gain medium for

/ 1

a high gain, condensed phase 1 !

alternative.

We have used phosphate

glass doped with (optically AN

active) lanthanide ions.

Measures rotation!

Erbium (Er3*) and
Ytterbium (Yb3*)
doped glass.
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Different Concept: The Hitch...

In a static, solid state material
the counter propagating
travelling waves induce a gain
grating.

From this both beams can
strongly interact, leading to
intensity oscillation or even
uni-directional lasing
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Contrast with Helium-Neon
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Free Space Ring.
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Phosphate glass: Er/Yb

Laser wavelength 1.53 micron
Lasing threshold 50 m\W.



Earlier Work used YAG:Nd
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Comparison: YAG vs Phosphate Glass
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Return to the Helium-Neon system
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Infrared Operation of a He-Ne Gyroscope

».Crystalline coating
mirrors (AlGaAs)

.Gain medium-is a 50:50
mix of 2°Ne and 22Ne
- “He added to quench
the 2s4—2p7
transition

«.cavity Q of 3.2x1010




Infrared Operation of a He-Ne Gyroscope
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Infrared Operation of a He-Ne Gyroscope
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First 1.15 micron gyroscope
to unlock on the bias provided
by Earth rotation alone.

In a comprised environment,
it seems to out perform
operation at 633 nm.



Why Not Go Further? Go Green... its trendy

Why use the 632.8 nm transition at all?

 Operation at 543.3 nm gives an
automatic 17% increase in scale factor,
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10% reduction in optical footprint. | e Ny
« The cavity Q increases by 17% as :
Q = ZﬂfOT ’ GE(?/',r
543.5nm Green 3S,->2p g 0.52
632.8 nm Red 3s,->2p, 10.0

3,391.3 nm Mid-IR 3s,->3p, 440.0



Conclusions

Portable Sensors: Solid state gyros can run on less than a watt, but need
development. However there is a road map.

Big Rings: Ring laser gyroscopes have improved in overall usable
sensitivity by around six orders of magnitude in 25 years.

So what is left in the toolbox?

| suggest we are close to the limits of what operation at 632.8 nm can do
for us...
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