Amplification of Ground Motion Rotations by Local Geology
L. Godinho, A. Tadeu, F.J. Sanchez-Sesma, A. Cadena Isaza

Departamento de Engenharia Cívil
Universidade de Coimbra

Instituto de Ingeniería
Universidad Nacional Autónoma de Mexico

Motivation

- Site effects influence the nature of ground motion, causing marked amplification phenomena .
- Many previous works deal with motion amplification, while little was done to characterize rotations.
- Scarce records exist of spatial gradients of motion.
- Mathematical models may be used to mitigate the lack of field information.
- Meshless methods seem to be adequate to study these phenomena.

Objectives

- Implement a meshless technique for simulating wave propagation in elastic media, making use of fundamental solutions that take into account the free surface of half-
 spaces.
- Study the rotations generated by seismic wave propagation in a halfspace.
- Understand the effect of simple local topography on the rotations generated by seismic waves.

Presentation Outline

Mathematical formulation of the half-space model.

Formulation of the MFS.

Model verification.

Numerical simulations:

- motions and rotations in a half-space
- motions and rotations in the presence of a shallow valley

Conclusions.

Rotations in a Half-Space under incidence of Plane Waves

HALF SPACE

$$
\mathrm{k}_{\mathrm{n}}=\frac{\omega}{\mathrm{c}} \quad \mathrm{k}_{\alpha}=\sqrt{\frac{\omega^{2}}{\alpha^{2}}-\mathrm{k}_{\mathrm{n}}^{2}} \mathrm{k}_{\beta}=\sqrt{\frac{\omega^{2}}{\beta^{2}}-\mathrm{k}_{\mathrm{n}}^{2}}
$$

Displacement potentials:
$\Phi=\left(\mathrm{A}_{1} \mathrm{e}^{\mathrm{ik} \mathrm{k}_{\alpha} \mathrm{y}}+\mathrm{A}_{2} \mathrm{e}^{-\mathrm{i} \mathrm{k}_{\alpha} \mathrm{y}}\right) \cdot \mathrm{e}^{-\mathrm{i} \mathrm{k}_{\mathrm{n}} \mathrm{x}}$
$\Psi=\left(B_{1} \mathrm{e}^{\mathrm{i} k_{\beta} \mathrm{y}}+\mathrm{B}_{2} \mathrm{e}^{-\mathrm{i} k_{\beta} \mathrm{y}}\right) \cdot \mathrm{e}^{-\mathrm{i} \mathrm{k}_{\mathrm{n}} \mathrm{x}}$

Displacements :

$$
\mathrm{u}_{\mathrm{x}}=\frac{\partial \Phi}{\partial \mathrm{x}}-\frac{\partial \Psi}{\partial \mathrm{y}} \quad \mathrm{u}_{\mathrm{y}}=\frac{\partial \Phi}{\partial \mathrm{y}}+\frac{\partial \Psi}{\partial \mathrm{x}}
$$

Rotations:

$$
\begin{aligned}
& \phi=\frac{1}{2} \nabla \times \mathbf{u}=\frac{1}{2}\left(\frac{\partial \mathrm{u}_{\mathrm{x}}}{\partial \mathrm{y}}-\frac{\partial \mathrm{u}_{\mathrm{y}}}{\partial \mathrm{x}}\right) \\
& \phi=\frac{1}{2}\left[\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right)\left(\mathrm{k}_{\beta}^{2}+\mathrm{k}_{\mathrm{n}}^{2}\right)\right] \cdot \mathrm{e}^{-i k_{n} \mathrm{x}}
\end{aligned}
$$

HALF SPACE - Rotations?

Green's Functions for a Half-Space

2.5D HALF SPACE

$v_{n}=\sqrt{\left(k_{p}\right)^{2}-k_{z}{ }^{2}-k_{n}{ }^{2}} \quad \gamma_{n}=\sqrt{\left(k_{s}\right)^{2}-k_{z}{ }^{2}-k_{n}{ }^{2}}$

Green's Functions for a Half-Space

2.5D HALF SPACE

Green's Functions for a Half-Space

2.5D HALF SPACE - Rotations?

$$
\phi=0.5\left(\frac{\partial \mathrm{u}_{\mathrm{x}}}{\partial \mathrm{y}}-\frac{\partial \mathrm{u}_{\mathrm{y}}}{\partial \mathrm{x}}\right)
$$

Horizontal load

$$
\phi^{x}=-0.5 \mathrm{E}_{\mathrm{a}} \sum_{\mathrm{n}=\mathrm{N}}^{\mathrm{N}} \mathrm{E}_{\mathrm{d}} \mathrm{E}_{\mathrm{co}}\binom{\mathrm{~B}_{\mathrm{n}}^{\mathrm{x}} \mathrm{k}_{2}^{2}+}{\mathrm{C}_{\mathrm{n}}^{x}\left(\gamma_{\mathrm{n}}^{2}+\mathrm{k}_{\mathrm{n}}^{2}\right)}+\phi_{\mathrm{full}}^{\mathrm{x}}
$$

In 2D problems, with $k_{z}=0$:

$$
\phi^{\mathrm{x}}=-0.5 \mathrm{E}_{\mathrm{a}} \sum_{\mathrm{n}=\mathrm{N}}^{\mathrm{N}} \mathrm{E}_{\mathrm{d}} \mathrm{E}_{\mathrm{co}}\left(\mathrm{C}_{\mathrm{n}}^{\mathrm{x}}\left(\gamma_{\mathrm{n}}^{2}+\mathrm{K}_{\mathrm{n}}^{2}\right)\right)+\phi_{\text {fiul }}^{\mathrm{x}}
$$

Vertical load

$$
\phi^{y}=0.5 E_{a} \sum_{n=-N}^{N} \frac{E_{d} E_{c 0}}{\gamma_{n}}\binom{C_{n}^{y} k_{z}^{2}+}{B_{n}^{y}\left(\gamma_{n}^{2}+k_{n}^{2}\right)}+\phi_{\text {ful }}^{y}
$$

In 2D problems, with $k_{z}=0$:
$\phi^{y}=0.5 E_{a} \sum_{n=-N}^{N} \frac{E_{d} E_{c 0}}{\gamma_{n}}\left(B_{n}^{y}\left(\gamma_{n}^{2}+k_{n}^{2}\right)\right)+\phi_{\text {full }}^{y}$

MFS Formulation

(M)ethod of (F)undamental (S)olutions

Displacements in the host medium:

where $G_{i j}^{(m)}\left(x_{n}^{(m)}, y_{n}^{(m)}, x, y\right)$ is the displacement at point (x, y), in medium m, along direction i, generated by a load acting along j at position $\left(x^{(m)}, y^{(m)}\right)$

Final system of $3 x N S$ equations on $3 x N S$ unknowns

Time Domain Signals

- The calculations are first preformed in the frequency domain.
- The time responses can then be obtained by applying an inverse Fourier transform.
- The source is assumed to emit a Ricker pulse: $u(\tau)=A\left(1-2 \tau^{2}\right) e^{-\tau^{2}}$
- Complex frequencies are used ($\omega_{c}=\omega$ - $i \eta$, with $\eta=0.7 \Delta \omega$) to prevent the "aliasing" phenomenon.

120° INFINITE WEDGE

$$
k_{\alpha}=\frac{\omega}{\alpha} \quad k_{\beta}=\frac{\omega}{\beta}
$$

Incidence of SV waves

This exact solution can be achieved with vertical propagation of S waves and horizontal propagation of P waves

Displacements:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{x}}=2 \mathrm{u}_{0} \cos \left(\mathrm{k}_{\alpha} \mathrm{x}\right)+2 \mathrm{u}_{0} \cos \left(\mathrm{k}_{\beta} \mathrm{y}\right) \\
& \mathrm{u}_{\mathrm{y}}=0
\end{aligned}
$$

Surface displacements $\left(y=\frac{|x|}{\sqrt{3}}\right)$:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{x}}=4 \mathrm{u}_{0} \cos \left(\mathrm{k}_{\alpha} \mathrm{x}\right) \\
& \mathrm{u}_{\mathrm{y}}=0
\end{aligned}
$$

Rotation:

$$
\Phi=\mathrm{k}_{\beta} \sin \left(\mathrm{k}_{\beta} \mathrm{y}\right)=\mathrm{k}_{\beta} \sin \left(\mathrm{k}_{\alpha}|\mathrm{x}|\right)
$$

Normalized Rotation:

$$
\begin{aligned}
& \frac{\Phi \mathrm{a}}{\eta \mathrm{u}_{0}}=\pi \sin \left(\mathrm{k}_{\alpha} \mathrm{x}\right) \\
& \eta=\frac{\omega \mathrm{a}}{\pi \beta}
\end{aligned}
$$

Verification

Topography: a 120° at the halfspace surface

Receivers from $x=-1000 m$ to $x=+1000 m$

Verification

Vertical Displacements

Verification against spatial finite differences

Grid of receivers

Verification against spatial finite differences

Numerical Results

Reference: HALFSPACE MEDIUM
Receivers from $x=-2000 m$ to $x=+2000 m$

Load 1 at $x=-5000 m y=100 m$

$$
\begin{gathered}
\alpha=2629 \mathrm{~m} / \mathrm{s} \\
\beta=1415 \mathrm{~m} / \mathrm{s} \\
\rho=2250 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Numerical Results

Numerical Results

CASE 1: Horizontal load (load 1) near the surface

 response normalized to the amplitude of the direct incident field (u_{0})—— Shallow valley

horizontal motion
5. OHz

vertical motion

vertical motion

rotations

rotations

Numerical Results

CASE 1: Horizontal load (load 1) near the surface time response for a central frequency of 1.8 Hz

Halfspace

Shallow valley

Numerical Results

CASE 2: Vertical load (load 2) at the center response normalized to the amplitude of the direct incident field (u_{0})
——Shallow valley

1. OHZ

2.0 Hz

2. OHz

- Halfspace

rotations

Numerical Results

CASE 2: Vertical load (load 2) at the center time response for a central frequency of 1.8 Hz

Halfspace

Shallow valley

Final remarks

- The present work evaluated the rotational motion originated by line loads in a 2D geometry using the MFS.
- Surface motion, including displacements and rotations, has been analyzed in the presence of an halfspace and of a shallow valley.
- When the system is illuminated by a horizontal load near the surface:
-In low frequencies, the rotational motion results reveals stronger amplifications than those provided by the displacement field, particularly in the vicinity of the edges of the valley;
-At higher frequencies, both displacements and rotations suffer deamplification for receivers placed at the valley and further away.

Final remarks

When the system is illuminated by a vertical load centered with the topography:
-Globally, the configuration of the response becomes more irregular with the presence of the valley;
-Amplification of rotational motion is much more significant than that of the displacements, both at higher and lower frequencies;
-Very strong amplifications are registered at the horizontal surfaces outside the valley.

For all cases, time responses reveal that the generation of surface and shear waves is the dominant factor for the rotational motion.

