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Motivation

- Site effects influence the nature of ground motion, causing

marked amplification phenomena .

- Many previous works deal with motion amplification, while   

little was done to characterize rotations.

- Scarce records exist of spatial gradients of motion.

- Mathematical models may be used to mitigate the lack of

field information.

- Meshless methods seem to be adequate to study these

phenomena.
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Objectives

- Implement a meshless technique for 
simulating wave propagation in 
elastic media, making use of 
fundamental solutions that take into 
account the free surface of half-
spaces.

- Study the rotations generated by 
seismic wave propagation in a half-
space.

- Understand the effect of simple local 
topography on the rotations 
generated by seismic waves.
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Presentation Outline

Mathematical formulation of the half-space model.

Formulation of the MFS.

Model verification.

Numerical simulations:

- motions and rotations in a half-space

- motions and rotations in the presence of a shallow

valley

Conclusions.
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Rotations in a Half-Space under
incidence of Plane Waves
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Rotations in a Half-Space under
incidence of Plane Waves

Rotation Comparison 
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Green´s Functions for a Half-Space
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Green´s Functions for a Half-Space
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Green´s Functions for a Half-Space

2.5D HALF SPACE – Rotations?
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MFS Formulation

(M)ethod of (F)undamental (S)olutions

Displacements in the host medium:

Final system of 3xNS equations on 3xNS unknowns
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Time Domain Signals

2221 τττ −−= e)(A)(u

• The calculations are first preformed in the frequency domain.

• The time responses can then be obtained by applying an inverse
Fourier transform.

• The source is assumed to emit a Ricker pulse:

• Complex frequencies are used (ωc =ω - iη , with η=0.7∆ω) to prevent
the “aliasing” phenomenon.
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Method verification
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Verification

Receivers from x=-1000m 
to x=+1000m

1
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Topography: a 120o at the 
halfspace surface
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Geometry

x=-5000m
R=300m

L=1400m

 α=2629 m/s

 β=1415 m/s

ρ=2250 kg/m3

Verification against spatial finite differences

Grid of receivers

y=100m
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Verification against spatial finite differences
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Numerical Results

Reference: HALFSPACE MEDIUM Receivers from x=-2000m 
to x=+2000m

Load 1 at x=-5000m y=100m

Load 2 at y=-5000m

 α=2629 m/s

 β=1415 m/s

ρ=2250 kg/m3
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Numerical Results

Topography: SHALLOW VALLEY Receivers from x=-2000m 
to x=+2000m

Load 2 at y=-5000m

R=300m
L=1400m

 α=2629 m/s

 β=1415 m/s

ρ=2250 kg/m3

Load 1 at x=-5000m 

y=100m
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Numerical Results

CASE 1: Horizontal load (load 1) near the surface
response normalized to the amplitude of the direct incident field (u0)
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Shallow valley Halfspace
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Numerical Results

CASE 1: Horizontal load (load 1) near the surface
time response for a central frequency of 1.8 Hz

Halfspace

Shallow valley
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Numerical Results

CASE 2: Vertical load (load 2) at the center
response normalized to the amplitude of the direct incident field (u0)
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Numerical Results

CASE 2: Vertical load (load 2) at the center
time response for a central frequency of 1.8 Hz

Halfspace

Shallow valley
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Final remarks

- The present work evaluated the rotational motion originated by line 

loads in a 2D geometry using the MFS.

- Surface motion, including displacements and rotations, has been

analyzed in the presence of an halfspace and of a shallow valley.

- When the system is illuminated by a horizontal load near the surface:
-In low frequencies, the rotational motion results reveals stronger 

amplifications than those provided by the displacement field, 

particularly in the vicinity of the edges of the valley;

-At higher frequencies, both displacements and rotations suffer 

deamplification for receivers placed at the valley and further away.
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Final remarks

When the system is illuminated by a vertical load centered with the 

topography:
-Globally, the configuration of the response becomes more irregular 

with the presence of the valley;

-Amplification of rotational motion is much more significant than that 

of the displacements, both at higher and lower frequencies;

-Very strong amplifications are registered at the horizontal surfaces 

outside the valley.

For all cases, time responses reveal that the generation of surface and 

shear waves is the dominant factor for the rotational motion.


