Sagnac Interferometry for the Determination of Rotations in Seismology

Ulrich Schreiber

Forschungseinrichtung Satellitengeodäsie

TUM, München, Germany

Heiner Igel Sektion Geophysik, LMU, München, Germany

1

Sagnac Interferometer Concept

Contributions to the Signal

$$\delta f = \frac{4\,A}{\lambda\,P}\,\vec{n}\cdot\vec{\Omega} + f_{z}.$$

- Scale Factor
- Rotation Rate
- o Orientation
- Nullshift Bias
- Backscatter-Coupling

Ring Lasers come in 2 Flavors

Large, monolithically stable but extremely expensive (long-term stable)

Compound Material mounted on Concrete Foundation (short-term stable)

Current Ring Laser Resolution

Device	Area [m ²]	τ[μs]	Q	$\delta\Omega$ [rad/s/ \sqrt{Hz}]	
C-II	1	150	4.5 e11	7.2 e-10	
GEOsensor	2.56	1200	3.5 e12	4.5 e-11	
G	16	1000	3.0 e12	9.0 e-11	
UG-1	367	1500	6.0 e12	4.7 e-12	
				8	

Resolution viewed differently ...

The G Ring Laser can still resolve the angular velocity when it is rotating each second by an angle which is equivalent to the thickness of a hair ($\sim 50 \ \mu m$) viewed from a distance of **556 km**.

9

Ring Lasers have no active mechanical Parts (theoretically no bandwidth limit)

Comparison of 2 different Rings at the same Location (Cashmere)

Seismic Observation Space

Application in Structural Engineering

17

FOG Applications

Structure Model on Shake-Table

- A view of the structure with the co-located measurement techniques
- Transducers and Gyroscope
- Transducers: Integration (2 times) on Sensor-differences yields Displacement
- Gyro: Integration (once) and multiplication with height yields Displacement

Gyroscopic Rotational Velocity Measurement

The rocking motion corresponds to a rotation and the gyro picks it up without the necessity of a external reference frame

Displacement Transducers

Displacements are measured at the top floor and the mid-heights of the other storeys. There is also a measurement on the table movement

This measurement technique requires a frame of reference:

Structure <--> laboratory floor

Inter-storey drift

In Situ Measurements

Sky - Tower in Auckland, NZ

Floor 60 - approx. 220 m high

